
UML/Analyzer: A Tool for the Instant Consistency Checking of UML Models

Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way, Suite 1010
Marina Del Rey, CA, USA
aegyed@teknowledge.com

Abstract

Large design models contain thousands of model
elements. Designers easily get overwhelmed
maintaining the consistency of such design models
over time. Not only is it hard to detect new
inconsistencies while the model changes but it also
hard to keep track of known inconsistencies. The
UML/Analyzer tool identifies inconsistencies instantly
with design changes and it keeps track of all
inconsistencies over time. It does not require
consistency rules with special annotations. Instead, it
treats consistency rules as black-box entities and
observes their behavior during their evaluation. The
UML/Analyzer tool is integrated with the UML
modeling tool IBM Rational Rose™ for broad
applicability and usability. It is highly scalable and
was evaluated on dozens of design models.

1. Introduction

Instant error feedback of any kind is a fundamental
best practice in the software engineering process.
Although, there are several tools [6,7] that support the
incremental consistency checking of UML design
models [8], none of them have been proven to provide
design feedback instantly during modeling. This
problem exists in part because correctly deciding what
consistency rules to evaluate when a model changes is
a seemingly impossible task given the close to infinite
number of changes and change combinations. Any
manual overhead in deciding this is bound to be error
prone.

This paper presents the UML/Analyzer tool for the
instant consistency checking of UML models. The tool
helps designers in detecting and tracking
inconsistencies and it does so correctly and quickly
with every design change. The tool is fully automated
and does not require manual assistance. The tool can
be used to provide consistency feedback in an intrusive

or non-intrusive manner. This paper presents the tools
and its capabilities. The theoretical background was
published in ICSE 2006 [3].

1.1 Illustration and Problem

The illustration in Figure 1 depicts two diagrams
created with the UML modeling tool IBM Rational
Rose™. The given model represents an early design-
time snapshot of a real, albeit simplified, video-on-
demand (VOD) system [2]. The class diagram (top)
represents the structure of the VOD system: a Display
used for visualizing movies and receiving user input, a
Streamer for downloading and decoding movie
streams, and a Server for providing the movie data.

User

disp :
Display
disp :

Display

st : Streamerst : Streamer
1: select 2: connect

3: wait
4: play 5: stream

Sequence Diagram

Display
select()
draw()
stop()
start()

Server
connect()
handleRequest()

Streamer
stream()
wait()

Class Diagram

Figure 1. Simplified UML Model of the VOD System

The sequence diagram (bottom) describes the

process of selecting a movie and playing it. Since a
sequence diagram contains interactions among
instances of classes (objects), the illustration depicts a
particular user invoking the select method on an
object, called disp, of type Display. This object then
creates a new object, called st, of type Streamer,
invokes connect and then wait. When the user invokes
play, object disp invokes stream on object st.

Consistency rules for UML describe conditions that
any UML model must satisfy for it to be considered a

Proceedings of the 29th International Conference on Software Engineering (ICSE),
Minneapolis, USA, May 2007

valid UML model. Figure 2 describes two such
consistency rules on how UML sequence diagrams
(objects and messages) relate to class diagrams.

Rule
1

Name of message must match an operation in
receiver’s class
operations=message.receiver.base.operations
return (operations->name->contains(message.name))

Rule
2

Calling direction of message must match an
association
in=message.receiver.base.incomingAssociations;
out=message.sender.base.outgoingAssociations;
return (in.intersectedWith(out)<>{})

Figure 2. Sample Consistency Rules

For example, consistency rule 1 states that the name

of a message must match an operation in the receiver’s
class. If this rule is evaluated on the 3rd message in the
sequence diagram (the wait message) then the
condition first computes operations =
message.receiver.base.operations where
message.receiver is the object st, receiver.base is the
class Streamer, and base.operations is {stream(),
wait()}. The condition then returns true because the set
of operation names (operations->name) contains the
message name wait. The model also contains
inconsistencies. For example, there is no connect()
method in the Streamer class although the disp object
invokes connect on the st object (rule 1). Or, the disp
object calls the st object (arrow direction) even though
in the class diagram only a Streamer may call a
Display (rule 2).

1.2 Detect Inconsistencies

Our tool supports both the batch consistency

checking of an entire UML model and the incremental
consistency checking of design changes. To support
the fast, incremental checking of design changes, the
tool identifies all model elements that affect the truth
value of any given consistency rule. A consistency rule
needs to be re-evaluated if and only if one of these
model elements changes. We refer to this set of model
elements as the scope of a consistency rule. Identifying
the scope is simple in principle, however, it is not
possible to predict in advance what model elements are
accessed by any given consistency rule.

Our tool circumvents this problem by observing the
run-time behavior of consistency rules during their
evaluation. To this end, we developed the equivalent of
a profiler for consistency checking. The profiling data
is used to establish a correlation between model
elements and consistency rules (and inconsistencies).
Based on this correlation, we can decide when to re-
evaluate consistency rules and when to display

inconsistencies - allowing an engineer to quickly
identify all inconsistencies that pertain to any part of
the model of interest at any time (i.e., living with
inconsistencies [5]).

For example, the evaluation of rule 1 on message
wait first accesses the message wait then the message’s
receiver object st, then its base class Streamer, and
finally the methods stream and wait of the base class
(recall earlier). The scope of rule 1 on message wait is
thus {wait, st, Streamer, stream(), wait()} as illustrated
through the shading in Figure 1. Naturally, this scope
is different for every rule and model element it is
applies on. For example, the evaluation of rule 1 on
message play requires access to play, disp object,
Display class, and its four methods. Its scope is
different from the scope of rule 1 on message wait
even though both evaluations are based on the same
consistency rule. The UML/Analyzer tool thus records
and maintains the scope separately for every <rule,
model element> pair (e.g., <rule1, wait>). We refer to
a <rule, model element> pair as a rule instance.

If a model element changes then all those rule
instances are re-evaluated that include the changed
model element in their scopes. For example, if method
wait is renamed then the rule instances <rule1,
connect>, <rule1, wait>, and <rule1, stream> need to
be re-evaluated because they contain the method wait
in their scopes. Not evaluated are rule instances such
as <rule1, play> or <rule1, select>.

In earlier work [3], we demonstrated that this scope
is complete and correct based on the evaluation of
dozens of small to large-scale UML models.

1.3. Track Inconsistencies

While it is important to know about inconsistencies,
it is often too distracting to resolve them right away.
The notion of “living with inconsistencies” [1,5]
advocates that there is a benefit in allowing
inconsistencies in design models on a temporary basis.
While our tool provides inconsistencies instantly, it
does not require the engineers to fix them instantly.
Our tool tracks all presently-known inconsistencies
and lets the engineers explore inconsistencies
according to their interests in the model.

However, it must be noted that the scope of an
inconsistency is continuously affected by model
changes. Scopes of inconsistencies must thus be
maintained continuously. Fortunately, we found that
the scope of a rule instance only then changes if one of
the model elements in the scope changes. In other
words, the scope of a rule instance changes only if its
truth value is affected by a change. So, the mechanism
for discovering the scope of a rule instance (discussed

earlier in Section 1.2) applies to the tracking of
inconsistencies as well. The only difference: our tool
re-captures the scope of a rule instance every time the
rule is re-evaluated. This way the scope remains up-to-
date. The overhead cost of doing so is minimal.

If a designer later on desires to identify all
inconsistencies related to a particular model element
(or set of model elements) then our tool simply
searches through the scopes of all rule instances to
identify the ones that are relevant.

1.4. Fixing Inconsistencies

The UML/Analyzer tool also provides support for
fixing inconsistencies. It must be noted that in order to
fix an inconsistency at least one of the model elements
of the scope of that inconsistency must be changed.
Thus, the scope of an inconsistency serves as the
starting point for fixing inconsistencies. This is a very
relevant feature because many existing approaches are
unable to pinpoint all the model elements that

contribute to any given inconsistency. Our tool
provides all this information.

2. Tool and Architecture

Figure 3 depicts a few screen snapshots of the
UML/Analyzer tool. The left depicts IBM Rational
Rose. An inconsistency is highlighted. It shows that
the message connect (in the sequence diagram) does
not have a corresponding operation in the receiver’s
base class. This inconsistency (described in the top
right) involves 6 model elements, which are listed
there. As was discussed earlier, the tool also helps the
engineer in understanding exactly how model elements
affect inconsistencies. As such, when the engineer
selects a model element, say the message connect, then
the tool presents all rule instances that accessed it. The
bottom right shows that the message connect is
actually involved in two inconsistencies. This bi-
directional navigation is essential for understanding
and resolving inconsistencies.

Figure 3. UML/Analyzer Tool Depicting an Inconsistency in IBM Rational Rose™

Since consistency rules are conditions on a model,
their truth values change only if the model changes.
Instant consistency checking thus requires an
understanding when, where, and how the model
changes. For this purpose, our tool relies on the UML
Interface Wrapper component – an infrastructure we
previously developed and integrated with IBM
Rational Rose and other COTS modeling tools [4].
This infrastructure exposes the modeling data of the
COTS modeling tool in an UML-compliant fashion. It
also employs a sophisticated change detection
mechanism. The latter is particularly important
because it notifies our tool of changes to Rose’s UML
model.

UML Analyzer

Consistency
Checker

IBM
Rational

Rose

UML Interface

Rule Detector

UML
Model
UML
Model

Evaluation
Profiler

ScopeScope

Figure 4. UML/Analyzer Architecture

Figure 4 shows the architecture of our tool. It

depicts the modeling tool IBM Rational Rose on the
lower-right corner. Rose is wrapped by our UML
Interface Wrapper which provides an UML-compliant
API for the Consistency Checker (top-left). The UML
Interface Wrapper also notifies the Rule Detector
component of user changes to the model. The Rule
Detector then identifies which consistency rules are
affected by the changes. For this purpose, it reads the
Scope database. The Rule Detector then instructs the
Consistency Checker to re-evaluate the affected
consistency rules and it instructs the Evaluation
Profiler to observe what model elements the
Consistency Checker accesses. The Evaluation Profiler
then updates the Scope database accordingly.

3. Evaluation

The UML/Analyzer tool was evaluated on over 40 case
studies (industrial and open-source). The tool is not a
commercial-grade product; however, it is integrated
with the commercial UML modeling tool IBM
Rational Rose for ease of use and broader
applicability. The tool is part of an ongoing research

effort and is continuously evolved and improved upon.
As such, there are known bugs and limitations. While
the tool and its evaluation were based on the UML 1.3
notation, we believe that the infrastructure we built
applies equally to other modeling languages (i.e., UML
2.0) because every consistency rule has to access
model elements and thus can be profiled. The
consistency rules may change but the infrastructure for
evaluating them instantly remains the same. To date,
our approach was implemented on top of a concrete
consistency rule language, consistency checker, and
modeling tool. If a different modeling tool is used then
the profiler needs to be customized to that tool and the
consistency rules have to be customized to the
language/checker available for that tool.

4. References

1. Balzer, R.: "Tolerating Inconsistency,"

Proceedings of 13th International Conference on
Software Engineering (ICSE-13), May 1991,
pp.158-165.

2. Dohyung, K.: "Java MPEG Player,"
http://peace.snu.ac.kr/dhkim/java/MPEG/, 1999.

3. Egyed, A.: "Instant Consistency Checking for the
UML," Proceedings of the 28th International
Conference on Software Engineering (ICSE),
Shanghai, China, May 2005.

4. Egyed A. and Balzer B.: Integrating COTS
Software into Systems through Instrumentation and
Reasoning. International Journal of Automated
Software Engineering (JASE) 13(1), 2006, pp.41-
64.

5. Fickas, S., Feather, M., Kramer, J.: Proceedings of
ICSE-97 Workshop on Living with Inconsistency.
Boston, USA, 1997.

6. Nentwich C., Capra L., Emmerich W., and
Finkelstein A.: xlinkit: a consistency checking and
smart link generation service. ACM Transactions
on Internet Technology (TOIT) 2(2), 2002, pp.151-
185.

7. Robins, J. and others: "ArgoUML,"
http://argouml.tigris.org/.

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison
Wesley, 1999.

Appendix A – Demo Script

The following two pages describe the demo script
for this tool demonstration. The tool demonstration
will be almost entirely conducted with the life tool
running on a single laptop. There are no difficulties in
setting up the demo. The tool demonstration includes
the UML/Analyzer tool and the modeling tool IBM
Rational Rose. The latter is used to construct an UML
model and the former is used to evaluate the model and
provide instant error feedback to the designer. The
demonstration will conclude with a few PowerPoint
slides on the evaluation of the tool. Note that most of
the presentation time will be spent on the tool. The
slides are simply to support concluding remarks on
applicability, scalability, usability, and correctness.

Step 1: Show IBM Rational Rose
Rose is a state-of-the-art UML modeling. We open the
tool, load a model similar to the one in Figure 1, and
explain the model to the audience.

Step 2: Explain Consistency
We will briefly explain the notion of a consistency rule
as being a Boolean condition evaluated on a model.
We will manually walk through one example of a
consistency check to illustrate this process. We will
use one of the rules in Figure 2.

Step 3: Check Consistency of Model
We start the UML/Analyzer tool and perform
exhaustive consistency checking with it. It will
evaluate only a handful of consistency checks on the
given small model. Some of the consistency rules will
be consistent and others inconsistent.

Step 4: Understand the Scope of a Consistency Rule
We will investigate one consistent and one inconsistent
example with the help of the UML/Analyzer tool. The
purpose is to illustrate why the one rule is consistent
but the other not. And another purpose is to illustrate
that our tool captured all the model elements involved
in the evaluation of both rules. The first picture above
shows that a consistency rule evaluated on model
element “4:play” turns out to be inconsistent whereas
the same rule evaluated on model element “3:wait” is
consistent. Even though both rules were identical, they
evaluated different model elements. We will
demonstrate that our tool captured precisely what
model elements were accessed during the evaluation of
both rules and why this knowledge explains the
outcome of the evaluation.

Step 5: Change a Model Element
We will demonstrate that design changes are instantly
recognized by our tool. For example, we will rename
the method start in the class Display and demonstrate
that our tool instantly recognizes that the inconsistency
we identified above is resolved. We will make
additional design changes to further illustrate this
capability which is the most significant contribution of
our tool.

Step 6: Navigate the Model and Rules
We will demonstrate that we can highlight and
navigate all model elements in the scope of a
consistency rule (consistent or not). We will further
demonstrate that we can select model elements in IBM
Rational Rose and have our tool identify all
consistency rules (consistent or not) that are affected.
This information is important for understanding the
impact of a design change – either by predicting what
the negative impact of a design change might be (what
inconsistencies it might cause) or by predicting what
model elements should change in order to resolve an
existing inconsistency.

Step 7: Demonstrate Changed Scope
We will demonstrate that design changes also cause
scope changes. For example, by changing the
ownership of the object st in the sequence diagram we
can illustrate that the scope of the previously evaluated
consistency rule on message “3:wait” no longer
includes the class Streamer and its methods but rather
the class Display and its methods. This scope change is
also instantly identified – together with the fact that the
rule is now inconsistent.

Step 8: Slides on Scalability and Usability
We will conclude our presentation by discussing
empirical results of over 29 UML models (26 of them
were third-party models) ranging from small models to
very large ones (see table below). These models were
evaluated on 24 types of consistency rules.

Model Size Model Name
3450 ANTS Visualizer
810 Bank Automat
6459 Biter Robocup Client
4741 BMS

125978 Boeing OEP 3.2
65213 Boeing PCES
6967 Calendarium 2.1
1409 Curriculum
4766 DeSI 2.3

20554 DSpace 3.2
1113 eBullition
4298 Game System
2352 HDCP Defect Seeding
5014 HMS
1596 Home Appliances & Ctrl

31478 Insurance Fees&Claims
1899 Inventory and Sales
4083 iTalks
3366 LCA
544 Microwave Oven
891 MVC

3605 NPI
2321 NZ Intern. Airport

38719 OODT
1729 Teleoperated Robot
1209 UML Tutor
3067 Vacation and Sick Leave
230 Video on Demand

23016 Wordpad

We will discuss that the average response times of our
tool relative to the model size was very small – we will
show the figure below. It shows that brute-force
consistency checking was not instant. It also shows
that type-based consistency checking (e.g., ArgoUML)
did not scale to very large models although it was close
to instant for medium-sized models. And it shows that
our tool was not affected by the model size at all. We
will discuss scalability by saying that for 97% of all
model changes, the response time was less than 10ms;
99% of all rule instances required less than 50ms with
an average of 9ms per change and a worst-case of less
than 2 seconds.

0

500

1000

1500

2000

2500

3000

100 1000 10000 100000

ev
lu

at
io

n
tim

e
in

 m
ill

is
ec

on
ds

model size

batch consistency checking

consistency checking
with type-based scope

consistency
checking with

instance-based
scope

Appendix B – Screen Snapshots

UML model depicted in IBM Rational Rose. Our tool gets invoked through Rose’s tool menu

The UML/Analyzer tool – for simplicity we will only consider two to three types of consistency rules

A complete consistency check reveals that consistency rule 1 is evaluated 5 times (see right: constraint instances).
One of these evaluations revealed an inconsistency (red color)

Double-clicking on the inconsistency reveals more details. We see that this inconsistency accessed 7 model
elements (i.e., scope elements).

We can highlight any scope element in Rose to quickly review it.

We found the wrong element. It is the one we highlighted above. We change its name to “start” – a design change

UML/Analyzer supports instant and lazy consistency checking. During the demo, we will use the lazy one in order
to better illustrate what happens after the design change. We see that after changing the message name to “start”,
two rule instances are affected – both are highlighted with a “*” (star symbol). The UML Analyzer tool only re-
evaluate these affected rule instances. This is all done automatically.

The change fixed the inconsistency – moreover the change did not introduce new inconsistencies.

Design changes can also have undesirable effects. If we change the object “s” in the sequence diagram to be an
instance of “Display” instead of “Streamer” then we cause several inconsistencies.

